Table 3: Spillover Table, Global Stock Market Returns
data("dy2009")
dca = ConnectednessApproach(dy2009,
nlag=2,
nfore=10,
model="VAR",
connectedness="Time",
Connectedness_config=list(TimeConnectedness=list(generalized=FALSE)))
## Estimating model
## Computing connectedness measures
## The (orthogonalized) VAR connectedness approach is implemented according to:
## Diebold, F. X., & Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. The Economic Journal, 119(534), 158-171.
US |
93.62 |
1.62 |
1.50 |
0.04 |
0.28 |
0.22 |
0.11 |
0.09 |
0.15 |
0.29 |
0.21 |
0.21 |
0.34 |
0.25 |
0.09 |
0.12 |
0.05 |
0.54 |
0.28 |
6.38 |
UK |
40.31 |
55.75 |
0.65 |
0.39 |
0.15 |
0.53 |
0.06 |
0.18 |
0.15 |
0.32 |
0.17 |
0.04 |
0.06 |
0.14 |
0.06 |
0.10 |
0.02 |
0.37 |
0.55 |
44.25 |
FRA |
38.33 |
21.72 |
37.21 |
0.06 |
0.03 |
0.17 |
0.30 |
0.34 |
0.30 |
0.18 |
0.24 |
0.06 |
0.12 |
0.25 |
0.12 |
0.06 |
0.14 |
0.08 |
0.27 |
62.79 |
GER |
40.82 |
15.86 |
12.99 |
27.58 |
0.08 |
0.06 |
0.34 |
0.42 |
0.56 |
0.12 |
0.31 |
0.29 |
0.05 |
0.17 |
0.04 |
0.10 |
0.03 |
0.07 |
0.11 |
72.42 |
HKG |
15.28 |
8.72 |
1.67 |
1.38 |
69.89 |
0.26 |
0.02 |
0.09 |
0.02 |
0.26 |
0.08 |
0.02 |
0.19 |
0.95 |
0.30 |
0.05 |
0.14 |
0.32 |
0.38 |
30.11 |
JPN |
12.13 |
3.05 |
1.80 |
0.88 |
2.28 |
77.69 |
0.17 |
0.30 |
0.28 |
0.05 |
0.19 |
0.34 |
0.35 |
0.09 |
0.11 |
0.03 |
0.04 |
0.09 |
0.14 |
22.31 |
AUS |
23.19 |
5.97 |
1.30 |
0.23 |
6.35 |
2.34 |
56.85 |
0.06 |
0.44 |
0.15 |
0.17 |
0.16 |
0.45 |
0.48 |
0.12 |
0.33 |
0.06 |
0.63 |
0.71 |
43.15 |
IDN |
6.03 |
1.58 |
1.21 |
0.73 |
6.38 |
1.64 |
0.44 |
76.99 |
0.74 |
0.45 |
0.10 |
0.93 |
0.24 |
1.01 |
0.66 |
0.08 |
0.34 |
0.10 |
0.35 |
23.01 |
KOR |
8.26 |
2.58 |
1.31 |
0.68 |
5.65 |
3.73 |
0.97 |
1.23 |
72.76 |
0.03 |
0.05 |
0.11 |
0.09 |
1.30 |
0.19 |
0.22 |
0.06 |
0.08 |
0.69 |
27.24 |
MYS |
4.05 |
2.23 |
0.58 |
1.26 |
10.50 |
1.50 |
0.42 |
6.59 |
0.53 |
69.20 |
0.13 |
0.13 |
0.24 |
1.07 |
0.10 |
0.59 |
0.41 |
0.17 |
0.31 |
30.80 |
PHL |
11.14 |
1.64 |
0.26 |
0.21 |
8.06 |
0.40 |
0.92 |
7.15 |
0.13 |
2.92 |
62.93 |
0.30 |
0.42 |
1.53 |
1.55 |
0.05 |
0.05 |
0.12 |
0.21 |
37.07 |
SGP |
16.79 |
4.81 |
0.65 |
0.88 |
18.48 |
1.34 |
0.37 |
3.23 |
1.55 |
3.61 |
1.68 |
43.07 |
0.34 |
1.06 |
0.84 |
0.47 |
0.07 |
0.32 |
0.43 |
56.93 |
TAI |
6.40 |
1.28 |
1.17 |
1.80 |
5.33 |
2.82 |
0.40 |
0.43 |
2.03 |
1.04 |
1.00 |
0.91 |
73.57 |
0.37 |
0.76 |
0.29 |
0.10 |
0.28 |
0.03 |
26.43 |
THA |
6.30 |
2.45 |
0.97 |
0.69 |
7.80 |
0.19 |
0.79 |
7.61 |
4.58 |
4.02 |
2.33 |
2.22 |
0.30 |
58.24 |
0.52 |
0.20 |
0.08 |
0.44 |
0.28 |
41.76 |
ARG |
11.86 |
2.15 |
1.57 |
0.09 |
1.31 |
0.82 |
1.33 |
0.41 |
0.37 |
0.62 |
0.43 |
0.63 |
1.05 |
0.24 |
75.33 |
0.06 |
0.09 |
1.38 |
0.27 |
24.67 |
BRA |
14.06 |
1.30 |
1.02 |
0.66 |
1.32 |
1.40 |
1.60 |
0.55 |
0.53 |
0.69 |
1.02 |
0.76 |
0.12 |
0.70 |
7.14 |
65.82 |
0.08 |
0.59 |
0.65 |
34.18 |
CHL |
11.81 |
1.09 |
1.03 |
0.03 |
3.19 |
0.60 |
1.39 |
2.34 |
0.33 |
0.31 |
0.08 |
0.91 |
0.34 |
0.81 |
2.89 |
3.98 |
65.78 |
2.70 |
0.42 |
34.22 |
MEX |
22.18 |
3.54 |
1.19 |
0.44 |
2.99 |
0.26 |
1.24 |
0.21 |
0.32 |
0.88 |
1.04 |
0.08 |
0.33 |
0.50 |
5.44 |
1.59 |
0.26 |
56.92 |
0.58 |
43.08 |
TUR |
2.99 |
2.46 |
0.17 |
0.74 |
0.57 |
0.90 |
0.64 |
0.13 |
0.63 |
0.28 |
0.63 |
0.06 |
0.88 |
0.84 |
0.48 |
1.05 |
0.64 |
0.15 |
85.76 |
14.24 |
TO |
291.91 |
84.07 |
31.03 |
11.18 |
80.75 |
19.18 |
11.50 |
31.36 |
13.64 |
16.22 |
9.87 |
8.16 |
5.88 |
11.76 |
21.41 |
9.39 |
2.65 |
8.44 |
6.66 |
675.03 |
Inc.Own |
385.53 |
139.81 |
68.24 |
38.76 |
150.64 |
96.86 |
68.35 |
108.35 |
86.40 |
85.42 |
72.80 |
51.23 |
79.46 |
70.00 |
96.73 |
75.21 |
68.42 |
65.36 |
92.43 |
cTCI/TCI |
NET |
285.53 |
39.81 |
-31.76 |
-61.24 |
50.64 |
-3.14 |
-31.65 |
8.35 |
-13.60 |
-14.58 |
-27.20 |
-48.77 |
-20.54 |
-30.00 |
-3.27 |
-24.79 |
-31.58 |
-34.64 |
-7.57 |
37.50/35.53 |
NPT |
18.00 |
17.00 |
15.00 |
13.00 |
14.00 |
13.00 |
11.00 |
9.00 |
9.00 |
7.00 |
8.00 |
4.00 |
5.00 |
5.00 |
8.00 |
4.00 |
2.00 |
2.00 |
7.00 |
|
dca = ConnectednessApproach(dy2009,
nlag=2,
nfore=10,
window.size=200,
model="VAR",
connectedness="Time",
Connectedness_config=list(TimeConnectedness=list(generalized=FALSE)))
## Estimating model
## Computing connectedness measures
## The (orthogonalized) VAR connectedness approach is implemented according to:
## Diebold, F. X., & Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. The Economic Journal, 119(534), 158-171.