data("dy2012")
data("exampleSim")
exampleSim = exampleSim[1:600,]
exampleSim = zoo(exampleSim, order.by=tail(index(dy2012),600)) # date is required so we borrow it from dy2012
Replication
of frequencyConnectedness
partition = c(pi+0.00001, pi/4, 0)
dca = ConnectednessApproach(exampleSim, 
                            nlag=2,
                            nfore=100,
                            model="VAR",
                            connectedness="Frequency",
                            Connectedness_config=list(FrequencyConnectedness=list(partition=partition, generalized=TRUE, scenario="ABS")))
## Estimating model
## Computing connectedness measures
## The VAR frequency connectedness approach is implemented according to:
##  Baruník, J., & Krehlík, T. (2018). Measuring the frequency dynamics of financial connectedness and systemic risk. Journal of Financial Econometrics, 16(2), 271-296.
| V1 | 0.14 | 0.28 | 0.53 | 0.80 | 
| V2 | 0.09 | 2.30 | 4.81 | 4.90 | 
| V3 | 0.04 | 0.04 | 29.86 | 0.08 | 
| TO | 0.13 | 0.31 | 5.34 | 5.79 | 
| Inc.Own | 0.28 | 2.61 | 35.20 | cTCI/TCI | 
| Net | -0.67 | -4.59 | 5.26 | 2.89/1.93 | 
| NPDC | 0.00 | 1.00 | 2.00 |  | 
| V1 | 8.42 | 10.07 | 80.57 | 90.63 | 
| V2 | 2.52 | 9.20 | 81.07 | 83.59 | 
| V3 | 0.27 | 0.22 | 69.57 | 0.49 | 
| TO | 2.79 | 10.29 | 161.63 | 174.72 | 
| Inc.Own | 11.21 | 19.49 | 231.21 | cTCI/TCI | 
| Net | -87.84 | -73.30 | 161.15 | 87.36/58.24 | 
| NPDC | 0.00 | 1.00 | 2.00 |  |