data("dy2012")
data("exampleSim")
exampleSim = exampleSim[1:600,]
exampleSim = zoo(exampleSim, order.by=tail(index(dy2012),600)) # date is required so we borrow it from dy2012
Replication
of frequencyConnectedness
partition = c(pi+0.00001, pi/4, 0)
dca = ConnectednessApproach(exampleSim,
nlag=2,
nfore=100,
model="VAR",
connectedness="Frequency",
Connectedness_config=list(FrequencyConnectedness=list(partition=partition, generalized=TRUE, scenario="ABS")))
## Estimating model
## Computing connectedness measures
## The VAR frequency connectedness approach is implemented according to:
## Baruník, J., & Krehlík, T. (2018). Measuring the frequency dynamics of financial connectedness and systemic risk. Journal of Financial Econometrics, 16(2), 271-296.
V1 |
0.14 |
0.28 |
0.53 |
0.80 |
V2 |
0.09 |
2.30 |
4.81 |
4.90 |
V3 |
0.04 |
0.04 |
29.86 |
0.08 |
TO |
0.13 |
0.31 |
5.34 |
5.79 |
Inc.Own |
0.28 |
2.61 |
35.20 |
cTCI/TCI |
Net |
-0.67 |
-4.59 |
5.26 |
2.89/1.93 |
NPDC |
0.00 |
1.00 |
2.00 |
|
V1 |
8.42 |
10.07 |
80.57 |
90.63 |
V2 |
2.52 |
9.20 |
81.07 |
83.59 |
V3 |
0.27 |
0.22 |
69.57 |
0.49 |
TO |
2.79 |
10.29 |
161.63 |
174.72 |
Inc.Own |
11.21 |
19.49 |
231.21 |
cTCI/TCI |
Net |
-87.84 |
-73.30 |
161.15 |
87.36/58.24 |
NPDC |
0.00 |
1.00 |
2.00 |
|