data("g2020")
dca = ConnectednessApproach(g2020,
nfore=100,
corrected=TRUE,
model="DCC-GARCH")
## Estimating model
## Computing connectedness measures
## The DCC-GARCH connectedness approach is implemented according to:
## Gabauer, D. (2020). Gabauer, D. (2020). Volatility impulse response analysis for DCC-GARCH models: The role of volatility transmission mechanisms. Journal of Forecasting, 39(5), 788-796.
EUR |
48.04 |
14.76 |
31.10 |
6.10 |
51.96 |
GBP |
26.23 |
50.31 |
19.97 |
3.49 |
49.69 |
CHF |
27.66 |
9.99 |
52.94 |
9.41 |
47.06 |
JPY |
9.11 |
2.89 |
15.82 |
72.18 |
27.82 |
TO |
63.00 |
27.64 |
66.89 |
19.00 |
176.54 |
Inc.Own |
111.04 |
77.95 |
119.83 |
91.18 |
cTCI/TCI |
NET |
11.04 |
-22.05 |
19.83 |
-8.82 |
58.85/44.13 |
NPT |
2.00 |
0.00 |
3.00 |
1.00 |
|
PlotTCI(dca, ylim=c(40,80))
PlotNET(dca, ylim=c(-100,100))
PlotTO(dca, ylim=c(0,120))
PlotFROM(dca, ylim=c(0,120))
PlotNPDC(dca,ylim=c(-40,40))