data("aaacgo2022")
Y = Yp = Yn = aaacgo2022[-1,]
k = ncol(Y)
for (i in 1:k) {
x = embed(as.numeric(aaacgo2022[,i]),2)
Y[,i] = Yp[,i] = Yn[,i] = 100*(x[,1]-x[,2])/x[,2]
Yp[which(Y[,i]<0),i] = 0
Yn[which(Y[,i]>0),i] = 0
}
Y_list = list(Y, Yp, Yn)
DCA = list()
spec = c("all", "positive", "negative")
for (i in 1:length(Y_list)) {
DCA[[i]] = suppressMessages(ConnectednessApproach(Y_list[[i]],
model="TVP-VAR",
connectedness="Time",
nlag=1,
nfore=10,
window.size=200,
VAR_config=list(TVPVAR=list(kappa1=0.99, kappa2=0.99, prior="MinnesotaPrior", gamma=0.1))))
kable(DCA[[i]]$TABLE)
}
PlotTCI(DCA[[1]], ca=list(DCA[[2]], DCA[[3]]), ylim=c(50,100))
PlotNET(DCA[[1]], ca=list(DCA[[2]], DCA[[3]]), ylim=c(-50,50))
PlotNPDC(DCA[[1]], ca=list(DCA[[2]], DCA[[3]]), ylim=c(-20,20))
PlotPCI(DCA[[1]], ca=list(DCA[[2]], DCA[[3]]))
## The pairwise connectedness index is implemented according to:
## Gabauer, D. (2021). Dynamic measures of asymmetric & pairwise connectedness within an optimal currency area: Evidence from the ERM I system. Journal of Multinational Financial Management, 60, 100680.