data("cgs2022")
dca = ConnectednessApproach(cgs2022,
nlag=1,
nfore=10,
window.size=250,
corrected=TRUE,
model="TVP-VAR",
connectedness="Time",
VAR_config=list(TVPVAR=list(kappa1=0.99, kappa2=0.99, prior="BayesPrior")))
## Estimating model
## Computing connectedness measures
## The TVP-VAR connectedness approach is implemented according to:
## Antonakakis, N., Chatziantoniou, I., & Gabauer, D. (2020). Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions. Journal of Risk and Financial Management, 13(4), 84.
X2YCHF |
16.15 |
11.66 |
8.31 |
4.92 |
5.83 |
4.90 |
5.88 |
6.03 |
5.11 |
3.71 |
4.30 |
4.18 |
1.95 |
2.72 |
2.75 |
3.36 |
4.29 |
3.95 |
83.85 |
X5YCHF |
9.65 |
13.09 |
10.82 |
4.14 |
6.03 |
5.65 |
5.13 |
6.37 |
6.00 |
3.35 |
4.41 |
4.63 |
1.93 |
3.14 |
3.38 |
3.05 |
4.58 |
4.65 |
86.91 |
X10YCHF |
7.16 |
11.36 |
13.81 |
3.73 |
6.06 |
6.35 |
4.55 |
6.36 |
6.72 |
3.07 |
4.53 |
5.13 |
1.82 |
3.20 |
3.71 |
2.80 |
4.59 |
5.05 |
86.19 |
X2YDKK |
4.67 |
4.68 |
4.08 |
15.97 |
9.87 |
7.57 |
9.55 |
7.88 |
5.68 |
3.29 |
3.76 |
3.74 |
1.81 |
2.69 |
2.88 |
3.61 |
4.48 |
3.78 |
84.03 |
X5YDKK |
4.13 |
5.22 |
5.09 |
7.21 |
11.10 |
8.95 |
7.02 |
9.01 |
7.95 |
3.34 |
4.58 |
5.00 |
1.75 |
3.10 |
3.51 |
3.30 |
4.91 |
4.84 |
88.90 |
X10YDKK |
3.58 |
5.05 |
5.46 |
5.78 |
9.29 |
11.53 |
5.35 |
8.40 |
9.47 |
3.24 |
4.92 |
5.82 |
1.71 |
3.18 |
3.90 |
2.95 |
4.90 |
5.47 |
88.47 |
X2YEUR |
4.86 |
5.17 |
4.45 |
8.33 |
8.31 |
6.06 |
13.62 |
10.04 |
7.09 |
3.91 |
4.36 |
4.29 |
1.85 |
2.71 |
2.84 |
3.61 |
4.54 |
3.96 |
86.38 |
X5YEUR |
4.10 |
5.29 |
5.10 |
5.74 |
8.68 |
7.82 |
8.13 |
10.80 |
9.27 |
3.57 |
4.91 |
5.41 |
1.74 |
3.04 |
3.45 |
3.27 |
4.88 |
4.82 |
89.20 |
X10YEUR |
3.61 |
5.21 |
5.60 |
4.42 |
7.98 |
9.16 |
6.08 |
9.68 |
11.28 |
3.48 |
5.41 |
6.44 |
1.72 |
3.19 |
3.81 |
2.81 |
4.74 |
5.37 |
88.72 |
X2YGBP |
3.95 |
4.38 |
3.91 |
3.89 |
5.03 |
4.76 |
5.06 |
5.54 |
5.21 |
17.51 |
13.29 |
9.53 |
1.77 |
2.63 |
2.67 |
2.95 |
4.10 |
3.80 |
82.49 |
X5YGBP |
3.68 |
4.61 |
4.57 |
3.62 |
5.54 |
5.80 |
4.56 |
6.18 |
6.54 |
10.46 |
13.73 |
11.64 |
1.64 |
2.87 |
3.17 |
2.75 |
4.26 |
4.39 |
86.27 |
X10YGBP |
3.52 |
4.76 |
5.04 |
3.49 |
5.92 |
6.68 |
4.38 |
6.65 |
7.64 |
7.39 |
11.48 |
13.52 |
1.57 |
2.93 |
3.42 |
2.61 |
4.25 |
4.77 |
86.48 |
X2YNOK |
2.81 |
3.32 |
3.05 |
2.88 |
3.53 |
3.25 |
3.27 |
3.68 |
3.43 |
2.35 |
2.72 |
2.66 |
23.37 |
16.06 |
10.42 |
4.09 |
4.67 |
4.44 |
76.63 |
X5YNOK |
2.86 |
3.92 |
3.88 |
3.21 |
4.57 |
4.63 |
3.52 |
4.74 |
4.75 |
2.56 |
3.49 |
3.67 |
11.75 |
17.04 |
11.22 |
3.72 |
5.11 |
5.36 |
82.96 |
X10YNOK |
2.90 |
4.20 |
4.46 |
3.34 |
5.22 |
5.68 |
3.67 |
5.34 |
5.73 |
2.56 |
3.84 |
4.28 |
7.16 |
10.74 |
15.70 |
3.64 |
5.46 |
6.09 |
84.30 |
X2YSEK |
3.88 |
4.18 |
3.73 |
4.35 |
5.13 |
4.36 |
4.94 |
5.31 |
4.41 |
3.07 |
3.61 |
3.52 |
3.32 |
4.08 |
3.94 |
17.20 |
11.95 |
9.01 |
82.80 |
X5YSEK |
3.63 |
4.68 |
4.58 |
4.12 |
5.85 |
5.64 |
4.65 |
6.06 |
5.67 |
3.17 |
4.17 |
4.28 |
2.80 |
4.22 |
4.51 |
8.85 |
12.76 |
10.38 |
87.24 |
X10YSEK |
3.35 |
4.80 |
5.07 |
3.49 |
5.79 |
6.43 |
4.08 |
6.04 |
6.55 |
2.96 |
4.34 |
4.87 |
2.65 |
4.42 |
5.04 |
6.78 |
10.46 |
12.91 |
87.09 |
TO |
72.33 |
92.49 |
87.20 |
76.67 |
108.62 |
103.68 |
89.81 |
113.31 |
107.22 |
65.48 |
88.11 |
89.09 |
48.95 |
74.92 |
74.62 |
64.16 |
92.17 |
90.12 |
1538.93 |
Inc.Own |
88.48 |
105.58 |
101.01 |
92.64 |
119.72 |
115.20 |
103.43 |
124.11 |
118.49 |
82.98 |
101.84 |
102.61 |
72.32 |
91.95 |
90.32 |
81.37 |
104.93 |
103.02 |
cTCI/TCI |
NET |
-11.52 |
5.58 |
1.01 |
-7.36 |
19.72 |
15.20 |
3.43 |
24.11 |
18.49 |
-17.02 |
1.84 |
2.61 |
-27.68 |
-8.05 |
-9.68 |
-18.63 |
4.93 |
3.02 |
90.53/85.50 |
NPT |
5.00 |
13.00 |
9.00 |
6.00 |
16.00 |
14.00 |
12.00 |
17.00 |
15.00 |
2.00 |
7.00 |
11.00 |
0.00 |
3.00 |
4.00 |
1.00 |
10.00 |
8.00 |
|
PlotTCI(dca, ylim=c(70,100))
PlotNET(dca, ylim=c(-50,50))
cc_nok = ConditionalConnectedness(dca, group=c(13,14,15))
## Conditional connectedness measures are implemented according to:
## Chatziantoniou, I., Gabauer, D., & Stenfors, A. (2021). Independent Policy, Dependent Outcomes: A Game of Cross-Country Dominoes across European Yield Curves (No. 2021-06). University of Portsmouth, Portsmouth Business School, Economics and Finance Subject Group.
PlotTCI(cc_nok, ylim=c(35,100))
PlotNET(cc_nok, ylim=c(-15,15))
cc_2y = ConditionalConnectedness(dca, group=seq(1,18,3))
## Conditional connectedness measures are implemented according to:
## Chatziantoniou, I., Gabauer, D., & Stenfors, A. (2021). Independent Policy, Dependent Outcomes: A Game of Cross-Country Dominoes across European Yield Curves (No. 2021-06). University of Portsmouth, Portsmouth Business School, Economics and Finance Subject Group.
X2YCHF |
44.80 |
13.73 |
16.35 |
10.36 |
5.48 |
9.29 |
55.20 |
X2YDKK |
12.20 |
40.10 |
24.75 |
8.68 |
4.78 |
9.50 |
59.90 |
X2YEUR |
13.45 |
23.06 |
37.51 |
10.79 |
5.12 |
10.08 |
62.49 |
X2YGBP |
11.30 |
10.99 |
14.19 |
49.99 |
5.12 |
8.40 |
50.01 |
X2YNOK |
7.43 |
7.69 |
8.71 |
6.24 |
58.98 |
10.94 |
41.02 |
X2YSEK |
10.54 |
11.84 |
13.42 |
8.39 |
9.02 |
46.79 |
53.21 |
TO |
54.93 |
67.32 |
77.42 |
44.46 |
29.52 |
48.21 |
321.85 |
Inc.Own |
99.73 |
107.41 |
114.92 |
94.45 |
88.50 |
94.99 |
cTCI/TCI |
NET |
-0.27 |
7.41 |
14.92 |
-5.55 |
-11.50 |
-5.01 |
64.37/53.64 |
NPT |
3.00 |
4.00 |
5.00 |
1.00 |
0.00 |
2.00 |
|
PlotTCI(cc_2y, ylim=c(20,100))
PlotNET(cc_2y, ylim=c(-30,30))
ca_currency = AggregatedConnectedness(dca, groups=list("CHF"=c(1,2,3), "DKK"=c(4,5,6), "EUR"=c(7,8,9), "GBP"=c(10,11,12), "NOK"=c(13,14,15), "SEK"=c(16,17,18)))
## Aggregated connectedness measures are introduced accoring to:
## Chatziantoniou, I., Gabauer, D., & Stenfor, A. (2021). Independent Policy, Dependent Outcomes: A Game of Cross-Country Dominoes across European Yield Curves (No. 2021-06). University of Portsmouth, Portsmouth Business School, Economics and Finance Subject Group.
CHF |
34.01 |
15.87 |
17.38 |
12.43 |
8.21 |
12.10 |
65.99 |
DKK |
13.98 |
29.09 |
23.44 |
12.56 |
8.18 |
12.75 |
70.91 |
EUR |
14.47 |
22.16 |
28.66 |
13.93 |
8.11 |
12.67 |
71.34 |
GBP |
12.80 |
14.91 |
17.25 |
36.18 |
7.56 |
11.30 |
63.82 |
NOK |
10.47 |
12.10 |
12.71 |
9.37 |
41.15 |
14.19 |
58.85 |
SEK |
12.63 |
15.05 |
15.90 |
11.33 |
11.66 |
33.43 |
66.57 |
TO |
64.35 |
80.09 |
86.68 |
59.63 |
43.71 |
63.01 |
397.48 |
Inc.Own |
98.36 |
109.19 |
115.34 |
95.81 |
84.86 |
96.44 |
cTCI/TCI |
NET |
-1.64 |
9.19 |
15.34 |
-4.19 |
-15.14 |
-3.56 |
79.50/66.25 |
NPT |
3.00 |
4.00 |
5.00 |
2.00 |
0.00 |
1.00 |
|
PlotTCI(ca_currency, ylim=c(50,100))
PlotNET(ca_currency, ylim=c(-35,35))
ca_maturity = AggregatedConnectedness(dca, groups=list("2Y"=seq(1,18,3), "5Y"=seq(2,18,3), "10Y"=seq(3,18,3)))
## Aggregated connectedness measures are introduced accoring to:
## Chatziantoniou, I., Gabauer, D., & Stenfor, A. (2021). Independent Policy, Dependent Outcomes: A Game of Cross-Country Dominoes across European Yield Curves (No. 2021-06). University of Portsmouth, Portsmouth Business School, Economics and Finance Subject Group.
## 2Y 5Y 10Y FROM
## 2Y "36.96" "34.42" "28.62" "63.04"
## 5Y "27.01" "37.82" "35.17" "62.18"
## 10Y "22.90" "35.78" "41.32" "58.68"
## TO " 49.91" " 70.20" " 63.79" "183.90"
## Inc.Own " 86.87" "108.02" "105.11" "cTCI/TCI"
## NET "-13.13" " 8.02" " 5.11" "91.95/61.30"
## NPT "0.00" "2.00" "1.00" ""
PlotTCI(ca_maturity, ylim=c(80,100))
PlotNET(ca_maturity, ylim=c(-25,25))